必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網(wǎng) > 高考備考 > 數(shù)學(xué)備考 >

高考數(shù)學(xué)易錯(cuò)點(diǎn)及解題思路

時(shí)間: 李金 數(shù)學(xué)備考

錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B,就有B=A,φ≠B,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況。

規(guī)避絕招:空集是一個(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。

易錯(cuò)2:忽視集合元素的三性致誤

錯(cuò)因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。

規(guī)避絕招:在解題時(shí)可以先確定字母參數(shù)的范圍后,再具體解決問題。

易錯(cuò)點(diǎn)3:四種命題的結(jié)構(gòu)不明致誤

錯(cuò)因分析:如果原命題是“若A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。

這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。

另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a,b都是奇數(shù)”。

規(guī)避絕招:在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。

易錯(cuò)點(diǎn)4:充分必要條件顛倒致誤

錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。

規(guī)避絕招:解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

易錯(cuò)點(diǎn)5:邏輯聯(lián)結(jié)詞理解不準(zhǔn)致誤

錯(cuò)因分析:在判斷含邏輯聯(lián)結(jié)詞的命題時(shí)很容易因?yàn)槔斫獠粶?zhǔn)確而出現(xiàn)錯(cuò)誤,在這里我們給出一些常用的判斷方法,希望對(duì)大家有所幫助:

p∨q真<=>p真或q真,

p∨q假<=>p假且q假(概括為一真即真);

p∧q真<=>p真且q真,

p∧q假<=>p假或q假(概括為一假即假);

┐p真<=>p假,┐p假<=>p真(概括為一真一假)。

規(guī)避絕招:記住以上判斷方法。

易錯(cuò)點(diǎn)6:求函數(shù)定義域忽視細(xì)節(jié)致誤

錯(cuò)因分析:函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,因此要求定義域就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

規(guī)避絕招:在求一般函數(shù)定義域時(shí)要注意下面幾點(diǎn):

(1)分母不為0;

(2)偶次被開放式非負(fù);

(3)真數(shù)大于0;

(4)0的0次冪沒有意義。

函數(shù)的定義域是非空的數(shù)集,在解決函數(shù)定義域時(shí)不要忘記了這點(diǎn)。對(duì)于復(fù)合函數(shù),要注意外層函數(shù)的定義域是由內(nèi)層函數(shù)的值域決定的。

易錯(cuò)點(diǎn)7:帶有絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤

錯(cuò)因分析:帶有絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),對(duì)于分段函數(shù)的單調(diào)性,有兩種基本的判斷方法:

一是在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,最后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;

二是畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)進(jìn)行直觀的判斷。研究函數(shù)問題離不開函數(shù)圖象,函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),在研究函數(shù)問題時(shí)要時(shí)時(shí)刻刻想到函數(shù)的圖象,學(xué)會(huì)從函數(shù)圖象上去分析問題,尋找解決問題的方案。

規(guī)避絕招:對(duì)于函數(shù)的幾個(gè)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

易錯(cuò)點(diǎn)8:求函數(shù)奇偶性的常見錯(cuò)誤

錯(cuò)因分析:求函數(shù)奇偶性的常見錯(cuò)誤有求錯(cuò)函數(shù)定義域或是忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)取?/p>

規(guī)避絕招:判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。

在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區(qū)間內(nèi)的任意性。

易錯(cuò)點(diǎn)9:抽象函數(shù)中推理不嚴(yán)密致誤

錯(cuò)因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)出來的,在解決問題時(shí),可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。

規(guī)避絕招:解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問題的突破口。

抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

易錯(cuò)點(diǎn)10:函數(shù)零點(diǎn)定理使用不當(dāng)致誤

錯(cuò)因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結(jié)論我們一般稱之為函數(shù)的零點(diǎn)定理。

規(guī)避絕招:函數(shù)的零點(diǎn)有“變號(hào)零點(diǎn)”和“不變號(hào)零點(diǎn)”,對(duì)于“不變號(hào)零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時(shí)要注意這個(gè)問題。

易錯(cuò)點(diǎn)11:混淆兩類切線致誤

錯(cuò)因分析:曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。

規(guī)避絕招:求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。

易錯(cuò)點(diǎn)12:混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

錯(cuò)因分析:對(duì)于一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會(huì)出錯(cuò)。

規(guī)避絕招:一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

易錯(cuò)點(diǎn)13:導(dǎo)數(shù)與極值關(guān)系不清致誤

錯(cuò)因分析:在使用導(dǎo)數(shù)求函數(shù)極值時(shí),很容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),而沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn)。

出現(xiàn)這些錯(cuò)誤的原因是對(duì)導(dǎo)數(shù)與極值關(guān)系不清。

規(guī)避絕招:可導(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時(shí)一定要注意對(duì)極值點(diǎn)進(jìn)行檢驗(yàn)。

易錯(cuò)點(diǎn)14:用錯(cuò)基本公式致誤

錯(cuò)因分析:等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時(shí),前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時(shí),前n項(xiàng)和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個(gè)公式是解題的根本,用錯(cuò)了公式,解題就失去了方向。

規(guī)避絕招:解題時(shí)一定要記對(duì)、用對(duì)。

易錯(cuò)點(diǎn)15:an,Sn關(guān)系不清致誤

錯(cuò)因分析:在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在關(guān)系:

這個(gè)關(guān)系是對(duì)任意數(shù)列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

規(guī)避絕招:當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì)這種轉(zhuǎn)換的相互性。

易錯(cuò)點(diǎn)16:對(duì)等差、等比數(shù)列的性質(zhì)理解錯(cuò)誤

錯(cuò)因分析:等差數(shù)列的前n項(xiàng)和在公差不為0時(shí)是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。

一般地,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N__)是等差數(shù)列。

規(guī)避絕招:解決這類題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問題要全面,把各種可能性都考慮進(jìn)去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問題時(shí)要注意這個(gè)特殊情況。

易錯(cuò)點(diǎn)17:數(shù)列中的最值錯(cuò)誤

錯(cuò)因分析:數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。

但是考生很容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對(duì)于n取何值時(shí),能夠取到最值求解出錯(cuò)。

規(guī)避絕招:在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸遠(yuǎn)近而定。

易錯(cuò)點(diǎn)18:錯(cuò)位相減求和時(shí)項(xiàng)數(shù)處理不當(dāng)致誤

錯(cuò)因分析:錯(cuò)位相減求和法的適用環(huán)境是:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和。基本方法是設(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,得到的和式要分三個(gè)部分:

(1)原來數(shù)列的第一項(xiàng);

(2)一個(gè)等比數(shù)列的前(n-1)項(xiàng)的和;

(3)原來數(shù)列的第n項(xiàng)乘以公比后在作差時(shí)出現(xiàn)的。

規(guī)避絕招:用錯(cuò)位相減法求數(shù)列的和時(shí)一定要注意處理好這三個(gè)部分。

高中數(shù)學(xué)基本不等式知識(shí)點(diǎn)

數(shù)學(xué)知識(shí)點(diǎn)1.不等式性質(zhì)比較大小方法:

(1)作差比較法(2)作商比較法

不等式的基本性質(zhì)

①對(duì)稱性:a > bb > a

②傳遞性: a > b, b > ca > c

③可加性: a > b a + c > b + c

④可積性: a > b, c > 0ac > bc

⑤加法法則: a > b, c > d a + c > b + d

⑥乘法法則:a > b > 0, c > d > 0 ac > bd

⑦乘方法則:a > b > 0, an > bn (n∈N)

⑧開方法則:a > b > 0

數(shù)學(xué)知識(shí)點(diǎn)2.算術(shù)平均數(shù)與幾何平均數(shù)定理:

(1)如果a、b∈R,那么a2 + b2 ≥2ab(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))

(2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))推廣:

如果為實(shí)數(shù),則重要結(jié)論

(1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;

(2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。

數(shù)學(xué)知識(shí)點(diǎn)3.證明不等式的常用方法:

比較法:比較法是最基本、最重要的方法。

當(dāng)不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,

則選擇作商比較法;碰到絕對(duì)值或根式,我們還可以考慮作平方差。

綜合法:從已知或已證明過的不等式出發(fā),根據(jù)不等式的性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。

分析法:不等式兩邊的聯(lián)系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。

什么是不等式

一般地,用純粹的大于號(hào)“>”、小于號(hào)“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))“≥”、不大于號(hào)(小于或等于號(hào))“≤”連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。總的來說,用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。

通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號(hào)也可以為<,≤,≥,> 中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問題。

高考提高數(shù)學(xué)成績(jī)的方法是什么

1、做題時(shí)不要怕難題

很多高考學(xué)生的數(shù)學(xué)成績(jī)提不上來,很大一部分原因就是他們對(duì)數(shù)學(xué)有畏懼心理。有的學(xué)生看到圓錐曲線和導(dǎo)數(shù)或是看到長(zhǎng)一點(diǎn)、復(fù)雜一些的敘述就有了退卻的心。而在考試中這部分的分?jǐn)?shù)如果你不去努力,就永遠(yuǎn)不會(huì)掙到,所以第一個(gè)建議就是大膽的去做。

2、做題之后加強(qiáng)反思

學(xué)生一定要明確一點(diǎn),就是在平常做題的時(shí)候,目的不是做題快慢,也不是得分多少,而是要明白題目的解題方法和思路。所以,要把自己做過的題目加以反思,總結(jié)一下自己的收獲。要做到知識(shí)成片,問題成串。這樣日久天長(zhǎng)之后,就會(huì)構(gòu)建起一個(gè)內(nèi)容與方法的知識(shí)系統(tǒng)。

有的學(xué)生認(rèn)為想要學(xué)好數(shù)學(xué)就要多做題。其實(shí)不然,的確應(yīng)該適時(shí)的多做題,但卻不能鉆入題海,盲目堆題,這樣在考試中也是很難會(huì)有作為的。所以要把提高數(shù)學(xué)當(dāng)成自己的目標(biāo),要把自己的活動(dòng)合理地系統(tǒng)地組織起來,要總結(jié)反思,水平才能長(zhǎng)進(jìn)。

3、錯(cuò)題本怎么用

數(shù)學(xué)的錯(cuò)題本不是你錯(cuò)了就要去記錄,它的使用方法是摘抄不是照抄不誤。如果你只顧著去采集問題,就失去了理解和挑選題目的過程,筆記也是一樣的原理,如果老師說什么就記什么,那么你這節(jié)課就等同于沒聽。真正有效率的人,是會(huì)把知識(shí)簡(jiǎn)化,把書本讀薄的。

高考數(shù)學(xué)答題有哪些竅門

1、審題要慢,答題要快

有些高考考生考數(shù)學(xué)只知道一味求快,往往題意未清,便匆忙動(dòng)筆,結(jié)果誤入歧途,即所謂欲速則不達(dá),看錯(cuò)一個(gè)字可能會(huì)遺憾終生,所以審題一定要慢,有了這個(gè)“慢”,才能形成完整的合理的解題策略,才有答題的“快”。

2、運(yùn)算要準(zhǔn),膽子要大

高考數(shù)學(xué)沒有足夠的時(shí)間讓你反復(fù)驗(yàn)算,更不容你一再地變換解題方法,往往是拿到一個(gè)題目,憑感覺選定一種方法就動(dòng)手做,這時(shí)除了你的每一步運(yùn)算務(wù)求正確外,還要求把你當(dāng)時(shí)的解法堅(jiān)持到底,也許你選擇的不是最好的方法,但如回頭重來將會(huì)花費(fèi)更多的時(shí)間,當(dāng)然堅(jiān)持到底并不意味著鉆牛角尖,一旦發(fā)現(xiàn)自己走進(jìn)死胡同,還是要立刻迷途知返。

3、先易后難,敢于放棄

能夠增強(qiáng)信心,使思維趨向,對(duì)發(fā)揮水平極為有利;另一方面如果先做數(shù)學(xué)難題,可能會(huì)浪費(fèi)好多時(shí)間,即使難關(guān)被攻克,卻已沒有時(shí)間去得那些易得的分?jǐn)?shù),所以關(guān)鍵時(shí)刻,敢于放棄,也是一種明智的選擇。有些解答題第一問就很難,這時(shí)可以先放棄第一問,而直接使用第一問的結(jié)論解決第2問、第3問。

4、先熟后生,合理用時(shí)

高考時(shí)面對(duì)熟悉的數(shù)學(xué)題目,自然象吃了定心丸,做起來得心應(yīng)手,會(huì)使你獲得好心情,并且可以在最短時(shí)間內(nèi)完成,留下更多的時(shí)間來思考那些不熟悉的題目。有些題目需花很多時(shí)間卻只得到很少分?jǐn)?shù),有些題目只要花很少時(shí)間卻有很高的分值。所以應(yīng)先把時(shí)間用在那些較易題或分值較高題目上,最大限度地提高時(shí)間的利用率。

143644 主站蜘蛛池模板: 理化生实验室设备,吊装实验室设备,顶装实验室设备,实验室成套设备厂家,校园功能室设备,智慧书法教室方案 - 东莞市惠森教学设备有限公司 | 电池挤压试验机-自行车喷淋-车辆碾压试验装置-深圳德迈盛测控设备有限公司 | 长信科技产业园官网_西安厂房_陕西标准工业厂房 | 路斯特伺服驱动器维修,伦茨伺服驱动器维修|万骏自动化百科 | 脉冲布袋除尘器_除尘布袋-泊头市净化除尘设备生产厂家 | 元拓建材集团官方网站 | 上海冠顶工业设备有限公司-隧道炉,烘箱,UV固化机,涂装设备,高温炉,工业机器人生产厂家 | 锂电混合机-新能源混合机-正极材料混料机-高镍,三元材料混料机-负极,包覆混合机-贝尔专业混合混料搅拌机械系统设备厂家 | 电池挤压试验机-自行车喷淋-车辆碾压试验装置-深圳德迈盛测控设备有限公司 | 北京开源多邦科技发展有限公司官网 | 主题班会网 - 安全教育主题班会,各类主题班会PPT模板 | 阿尔法-MDR2000无转子硫化仪-STM566 SATRA拉力试验机-青岛阿尔法仪器有限公司 | 玻璃瓶厂家_酱菜瓶厂家_饮料瓶厂家_酒瓶厂家_玻璃杯厂家_徐州东明玻璃制品有限公司 | 专业深孔加工_东莞深孔钻加工_东莞深孔钻_东莞深孔加工_模具深孔钻加工厂-东莞市超耀实业有限公司 | TMT观察网_独特视角观察TMT行业 派财经_聚焦数字经济内容服务平台 | 欧盟ce检测认证_reach检测报告_第三方检测中心-深圳市威腾检验技术有限公司 | 隔离变压器-伺服变压器--输入输出电抗器-深圳市德而沃电气有限公司 | 电竞馆加盟,沈阳网吧加盟费用选择嘉棋电竞_售后服务一体化 | 钢格板_钢格栅_格栅板_钢格栅板 - 安平县鑫拓钢格栅板厂家 | 成人纸尿裤,成人尿不湿,成人护理垫-山东康舜日用品有限公司 | 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 临朐空调移机_空调维修「空调回收」临朐二手空调 | 开平机_纵剪机厂家_开平机生产厂家|诚信互赢-泰安瑞烨精工机械制造有限公司 | 胜为光纤光缆_光纤跳线_单模尾纤_光纤收发器_ODF光纤配线架厂家直销_北京睿创胜为科技有限公司 - 北京睿创胜为科技有限公司 | 游泳池设计|设备|配件|药品|吸污机-东莞市太平洋康体设施有限公司 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | PVC快速门-硬质快速门-洁净室快速门品牌厂家-苏州西朗门业 | 自动检重秤-动态称重机-重量分选秤-苏州金钻称重设备系统开发有限公司 | 定时排水阀/排气阀-仪表三通旋塞阀-直角式脉冲电磁阀-永嘉良科阀门有限公司 | 赛默飞Thermo veritiproPCR仪|ProFlex3 x 32PCR系统|Countess3细胞计数仪|371|3111二氧化碳培养箱|Mirco17R|Mirco21R离心机|仟诺生物 | 皮带机-带式输送机价格-固定式胶带机生产厂家-河南坤威机械 | 翅片管换热器「型号全」_厂家-淄博鑫科环保 | 培训无忧网-教育培训咨询招生第三方平台 | 高效节能电机_伺服主轴电机_铜转子电机_交流感应伺服电机_图片_型号_江苏智马科技有限公司 | CE认证_FCC认证_CCC认证_MFI认证_UN38.3认证-微测检测 CNAS实验室 | 碳化硅,氮化硅,冰晶石,绢云母,氟化铝,白刚玉,棕刚玉,石墨,铝粉,铁粉,金属硅粉,金属铝粉,氧化铝粉,硅微粉,蓝晶石,红柱石,莫来石,粉煤灰,三聚磷酸钠,六偏磷酸钠,硫酸镁-皓泉新材料 | 深圳离婚律师咨询「在线免费」华荣深圳婚姻律师事务所专办离婚纠纷案件 | 暴风影音| 超声波焊接机_超音波熔接机_超声波塑焊机十大品牌_塑料超声波焊接设备厂家 | 阴离子_阳离子聚丙烯酰胺厂家_聚合氯化铝价格_水处理絮凝剂_巩义市江源净水材料有限公司 | 宝元数控系统|对刀仪厂家|东莞机器人控制系统|东莞安川伺服-【鑫天驰智能科技】 |