高中數(shù)學(xué)三角函數(shù)誘導(dǎo)公式
其實(shí),三角函數(shù)是高中學(xué)習(xí)比較難的一個(gè)章節(jié),目前對(duì)于很多同學(xué)來(lái)說(shuō)都不是很好掌握,為了方便大家學(xué)習(xí)借鑒,下面小編精心準(zhǔn)備了高中數(shù)學(xué)三角函數(shù)誘導(dǎo)公式內(nèi)容,歡迎使用學(xué)習(xí)!
三角函數(shù)誘導(dǎo)公式之常用公式
公式本質(zhì):所謂三角函數(shù)誘導(dǎo)公式,就是將角n?(π/2)±α的三角函數(shù)轉(zhuǎn)化為角α的三角函數(shù)。
常用公式
公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
誘導(dǎo)公式記憶口訣:
“奇變偶不變,符號(hào)看象限”。
“奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n?(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。
符號(hào)判斷口訣:
“一全正;二正弦;三兩切;四余弦”。這十二字口訣的意思就是說(shuō): 第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”; 第二象限內(nèi)只有正弦是“+”,其余全部是“-”; 第三象限內(nèi)只有正切和余切是“+”,其余全部是“-”; 第四象限內(nèi)只有余弦是“+”,其余全部是“-”。
“ASCT”反Z。意即為“all(全部)”、“sin”、“cos”、“tan”按照將字母Z反過(guò)來(lái)寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。
三角函數(shù)誘導(dǎo)公式之三角函數(shù)
同角三角函數(shù)的基本關(guān)系式
倒數(shù)關(guān)系
tanα ?cotα=1
sinα ?cscα=1
cosα ?secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系
sin2(α)+cos2(α)=1
1+tan2(α)=sec2(α)
1+cot2(α)=csc2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan2α=2tanα/(1-tan2(α))
半角的正弦、余弦和正切公式
sin2(α/2)=(1-cosα)/2
cos2(α/2)=(1+cosα)/2
tan2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1―cosα)/sinα=sinα/1+cosα
萬(wàn)能公式
sinα=2tan(α/2)/(1+tan2(α/2))
cosα=(1-tan2(α/2))/(1+tan2(α/2))
tanα=(2tan(α/2))/(1-tan2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin 3(α)
cos3α=4cos 3(α)-3cosα
tan3α=(3tanα-tan3(α))/(1-3tan2(α))
三角函數(shù)的和差化積公式
sinα+sinβ=2sin((α+β)/2) ?cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2) ?sin((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)?sin((α-β)/2)
三角函數(shù)的積化和差公式
sinα?cosβ=0.5[sin(α+β)+sin(α-β)]
cosα?sinβ=0.5[sin(α+β)-sin(α-β)]
cosα?cosβ=0.5[cos(α+β)+cos(α-β)]
sinα?sinβ=- 0.5[cos(α+β)-cos(α-β)]
高中數(shù)學(xué)解題方法
1、不等式、方程或函數(shù)的題型,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、在研究含有參數(shù)的初等函數(shù)的時(shí)候應(yīng)該抓住無(wú)論參數(shù)怎么變化一些性質(zhì)都不變的特點(diǎn)。如函數(shù)過(guò)的定點(diǎn)、二次函數(shù)的對(duì)稱軸等。
3、在求零點(diǎn)的函數(shù)中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法。
4、恒成立問(wèn)題中,可以轉(zhuǎn)化成最值問(wèn)題或者二次函數(shù)的恒成立可以利用二次函數(shù)的圖像性質(zhì)來(lái)解決,靈活使用函數(shù)閉區(qū)間上的最值,分類討論的思想(在分類討論中應(yīng)注意不重復(fù)不遺漏)。
5、選擇與填空中出現(xiàn)不等式的題,應(yīng)優(yōu)先選特殊值法。
6、在利用距離的幾何意義求最值得問(wèn)題中,應(yīng)首先考慮兩點(diǎn)之間線段最短,常用次結(jié)論來(lái)求距離和的最小值;三角形的兩邊之差小于第三邊,常用此結(jié)論來(lái)求距離差的最大值。
高中學(xué)數(shù)學(xué)的小竅門有哪些
1.背誦數(shù)學(xué)公式
數(shù)學(xué)的出題方式有很多種,但是解題方法卻是相對(duì)固定的,需要熟練掌握數(shù)學(xué)公式。在學(xué)習(xí)高中數(shù)學(xué)的時(shí)候,我們一定要先把數(shù)學(xué)公式背誦清楚,做到在考試的時(shí)候能夠記得起計(jì)算公式,這是學(xué)好高中數(shù)學(xué)的關(guān)鍵步驟。如果連數(shù)學(xué)公式都不記得,那做題和解題就無(wú)從談起了。
2.做多數(shù)學(xué)題目
高中數(shù)學(xué)的學(xué)習(xí)內(nèi)容比較多,只有通過(guò)多做數(shù)學(xué)題目才能加深對(duì)所學(xué)內(nèi)容的理解。一般來(lái)說(shuō),在應(yīng)試教育的指揮棒下,多做練習(xí)題目是所有高中科目都采取的一種方式。因?yàn)榭荚嚨拇缶V是相對(duì)固定不變的,而且考試范圍也不會(huì)超過(guò)教科書和考試大綱的范圍。因此,出題的渠道都是圍繞教科書和大綱,無(wú)論怎么出題都離不開(kāi)教科書和大綱。所以,通過(guò)多做題目可以達(dá)到提高效率的目的。
3.學(xué)會(huì)獨(dú)立思考
高中數(shù)學(xué)的學(xué)習(xí)需要具備一定的邏輯思維能力,通過(guò)獨(dú)立思考可以提高學(xué)習(xí)效果。在學(xué)習(xí)高中數(shù)學(xué)的時(shí)候,尤其是遇到難題的時(shí)候,千萬(wàn)不要著急去翻看解題技巧和參考答案,而是應(yīng)該先思考怎么去答題。首先就是要從腦海當(dāng)中去想一想有沒(méi)有在課堂上學(xué)習(xí)過(guò)這個(gè)題目,有沒(méi)有這個(gè)題目的解題方法和路徑,其次再是嘗試去解題。通過(guò)這樣的思維發(fā)散,可以提高解題的技巧,從而有利于學(xué)好高中數(shù)學(xué)。
高中學(xué)數(shù)學(xué)的小竅門
1.學(xué)數(shù)學(xué)要善于思考,自己想出來(lái)的答案遠(yuǎn)比別人講出來(lái)的答案印象深刻。
2.課前要做好預(yù)習(xí),這樣上數(shù)學(xué)課時(shí)才能把不會(huì)的知識(shí)點(diǎn)更好的消化吸收掉。
3.數(shù)學(xué)公式一定要記熟,并且還要會(huì)推導(dǎo),能舉一反三。
4.學(xué)好數(shù)學(xué)最基礎(chǔ)的就是把課本知識(shí)點(diǎn)及課后習(xí)題都掌握好。
5.數(shù)學(xué)80%的分?jǐn)?shù)來(lái)源于基礎(chǔ)知識(shí),20%的分?jǐn)?shù)屬于難點(diǎn),所以考120分并不難。
6.數(shù)學(xué)需要沉下心去做,浮躁的人很難學(xué)好數(shù)學(xué),踏踏實(shí)實(shí)做題才是硬道理。
7.數(shù)學(xué)要想學(xué)好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。
8.數(shù)學(xué)最主要的就是解題過(guò)程,懂得數(shù)學(xué)思維很關(guān)鍵,思路通了,數(shù)學(xué)自然就會(huì)了。
9.數(shù)學(xué)不是用來(lái)看的,而是用來(lái)算的,或許這一秒沒(méi)思路,當(dāng)你拿起筆開(kāi)始計(jì)算的那一秒,就豁然開(kāi)朗了。
10.數(shù)學(xué)題目不會(huì)做,原因之一就是例題沒(méi)研究明白,所以數(shù)學(xué)書上的例題絕對(duì)不要放過(guò)。