必胜高考网_全国高考备考和志愿填报信息平台

必勝高考網 > 高考備考 > 數學備考 >

2017高考數學易錯易混知識點

時間: 思晴2 數學備考

  高考數學有許多易錯易混知識點,需要同學們去做歸納整理。接下來,學習啦小編為你分享2017高考數學易錯易混知識點。

  2017高考數學易錯易混知識點

  一、集合與函數

  1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解。

  2.在應用條件時,易忽略是空集的情況

  3.你會用補集的思想解決有關問題嗎?

  4.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區別。

  6.求解與函數有關的問題易忽略定義域優先的原則。

  7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱。

  8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域。

  9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調。

  10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法

  11.求函數單調性時,易錯誤地在多個單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示。

  12.求函數的值域必須先求函數的定義域。

  13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題)。這幾種基本應用你掌握了嗎?

  14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

  (真數大于零,底數大于零且不等于1)字母底數還需討論

  15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

  16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。

  17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

  二、不等式

  18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”。

  19.絕對值不等式的解法及其幾何意義是什么?

  20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

  21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”。

  22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區間表示;不能用不等式表示。

  23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”。

  三、數列

  24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

  25.在“已知,求”的問題中,你在利用公式時注意到了嗎?需要驗證,有些題目通項是分段函數。

  26.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續的。)

  27.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

  四、三角函數

  28.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區別嗎?

  29.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?

  30.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

  31.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。異角化同角,異名化同名,高次化低次)

  32.你還記得某些特殊角的三角函數值嗎?

  33.掌握正弦函數、余弦函數及正切函數的圖象和性質。你會寫三角函數的單調區間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

  34.函數的圖象的平移,方程的平移易混:

  (1)函數的圖象的平移為“左+右-,上+下-”。

  (2)方程表示的圖形的平移為“左+右-,上-下+”。

  35.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

  36.正弦定理時易忘比值還等于2R.

  五、平面向量

  37.數0有區別,0的模為數0,它不是沒有方向,而是方向不定。可以看成與任意向量平行,但與任意向量都不垂直。

  38.數量積與兩個實數乘積的區別:

  在實數中:若a≠0,且ab=0,則b=0,但在向量的數量積中,若a≠0,且a?b=0,不能推出b=0。

  39.a?b<0是向量和向量夾角為鈍角的必要而不充分條件。

  六、解析幾何

  40.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?

  41.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。

  42.解決線性規劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。(①設出變量,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到并求出最優解⑦應用題一定要有答。)

  43.三種圓錐曲線的定義、圖形、標準方程、幾何性質,橢圓與雙曲線中的兩個特征三角形你掌握了嗎?

  44.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?

  45.通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結論?)

  46.在用圓錐曲線與直線聯立求解時,消元后得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行)。

  47.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?

  七、立體幾何

  48.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

  49.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什么?

  50.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

  51.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行”而導致證明過程跨步太大。

  52.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  53.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。

  54.兩條異面直線所成的角的范圍:0°≤α≤90°

  直線與平面所成的角的范圍:0°≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  55.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關幾何元素的“不變量”與“不變性”。

  56.棱柱及其性質、平行六面體與長方體及其性質。這些知識你掌握了嗎?(注意運用向量的方法解題)

  57.球及其性質;經緯度定義易混。經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。這些知識你掌握了嗎?

  八、排列、組合和概率

  58.解排列組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。

  解排列組合問題的規律是:相鄰問題捆綁法;不鄰問題插空法;多排問題單排法;定位問題優先法;定序問題倍縮法;多元問題分類法;有序分配問題法;選取問題先排后排法;至多至少問題間接法。

  59.二項式系數與展開式某一項的系數易混,第r+1項的二項式系數為。二項式系數最大項與展開式中系數最大項易混。二項式系數最大項為中間一項或兩項;展開式中系數最大項的求法要用解不等式組來確定r.

  60.你掌握了三種常見的概率公式嗎?(①等可能事件的概率公式;②互斥事件有一個發生的概率公式;③相互獨立事件同時發生的概率公式。)

  61.求分布列的解答題你能把步驟寫全嗎?

  62.如何對總體分布進行估計?(用樣本估計總體,是研究統計問題的一個基本思想方法,一般地,樣本容量越大,這種估計就越精確,要求能畫出頻率分布表和頻率分布直方圖;理解頻率分布直方圖矩形面積的幾何意義。)

  63.你還記得一般正態總體如何化為標準正態總體嗎?(對任一正態總體來說,取值小于x的概率,其中表示標準正態總體取值小于的概率)

  九、導數及其應用

  64.在點處可導的定義你還記得嗎?它的幾何意義和物理意義分別是什么?利用導數可解決哪些問題?具體步驟還記得嗎?

  65.你會用“在其定義域內可導,且不恒為零,則在某區間上單調遞增(減)對恒成立。”解決有關函數的單調性問題嗎?

  66.你知道“函數在點處可導”是“函數在點處連續”的什么條件嗎?(整理自網絡 如有侵權 聯系刪除)

  下一頁更多有關“高考數學最易失分知識點”的內容

94353 主站蜘蛛池模板: 高铝矾土熟料_细粉_骨料_消失模_铸造用铝矾土_铝酸钙粉—嵩峰厂家 | 雄松华章(广州华章MBA)官网-专注MBA/MPA/MPAcc/MEM辅导培训 | 酒水灌装机-白酒灌装机-酒精果酒酱油醋灌装设备_青州惠联灌装机械 | 短信通106短信接口验证码接口群发平台_国际短信接口验证码接口群发平台-速度网络有限公司 | 集装袋吨袋生产厂家-噸袋廠傢-塑料编织袋-纸塑复合袋-二手吨袋-太空袋-曹县建烨包装 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 密封圈_泛塞封_格莱圈-[东莞市国昊密封圈科技有限公司]专注密封圈定制生产厂家 | [品牌官网]贵州遵义双宁口腔连锁_贵州遵义牙科医院哪家好_种植牙_牙齿矫正_原华美口腔 | 钢格板|镀锌钢格板|热镀锌钢格板|格栅板|钢格板|钢格栅板|热浸锌钢格板|平台钢格板|镀锌钢格栅板|热镀锌钢格栅板|平台钢格栅板|不锈钢钢格栅板 - 专业钢格板厂家 | 液压升降货梯_导轨式升降货梯厂家_升降货梯厂家-河南东圣升降设备有限公司 | vr安全体验馆|交通安全|工地安全|禁毒|消防|安全教育体验馆|安全体验教室-贝森德(深圳)科技 | 3d可视化建模_三维展示_产品3d互动数字营销_三维动画制作_3D虚拟商城 【商迪3D】三维展示服务商 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 金联宇电缆总代理-金联宇集团-广东金联宇电缆实业有限公司 | 定制防伪标签_防伪标签印刷_防伪标签厂家-510品保防伪网 | MOOG伺服阀维修,ATOS比例流量阀维修,伺服阀维修-上海纽顿液压设备有限公司 | lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 重庆磨床过滤机,重庆纸带过滤机,机床伸缩钣金,重庆机床钣金护罩-重庆达鸿兴精密机械制造有限公司 | 10吨无线拉力计-2吨拉力计价格-上海佳宜电子科技有限公司 | 咖啡加盟,咖啡店加盟连锁品牌-卡小逗 | 大型工业风扇_工业大风扇_大吊扇_厂房车间降温-合昌大风扇 | 电缆接头_防水接头_电缆防水接头 - 乐清市新豪电气有限公司 | 铸铁平台,大理石平台专业生产厂家_河北-北重机械 | 英思科GTD-3000EX(美国英思科气体检测仪MX4MX6)百科-北京嘉华众信科技有限公司 | 深圳高新投三江工业消防解决方案提供厂家_服务商_园区智慧消防_储能消防解决方案服务商_高新投三江 | 起好名字_取个好名字_好名网免费取好名在线打分 | 欧必特空气能-商用空气能热水工程,空气能热水器,超低温空气源热泵生产厂家-湖南欧必特空气能公司 | 香蕉筛|直线|等厚|弧形|振动筛|香蕉筛厂家-洛阳隆中重工 | 上海单片机培训|重庆曙海培训分支机构—CortexM3+uC/OS培训班,北京linux培训,Windows驱动开发培训|上海IC版图设计,西安linux培训,北京汽车电子EMC培训,ARM培训,MTK培训,Android培训 | 通风气楼_通风天窗_屋顶风机-山东美创通风设备有限公司 | 武汉天安盾电子设备有限公司 - 安盾安检,武汉安检门,武汉安检机,武汉金属探测器,武汉测温安检门,武汉X光行李安检机,武汉防爆罐,武汉车底安全检查,武汉液体探测仪,武汉安检防爆设备 | 注塑_注塑加工_注塑模具_塑胶模具_注塑加工厂家_深圳环科 | 皮带机-带式输送机价格-固定式胶带机生产厂家-河南坤威机械 | 气动调节阀,电动调节阀,自力式压力调节阀,切断阀「厂家」-浙江利沃夫自控阀门 | 公交驾校-北京公交驾校欢迎您!| PU树脂_水性聚氨酯树脂_聚氨酯固化剂_聚氨酯树脂厂家_宝景化工 | 实验室装修_实验室设计_实验室规划设计- 上海广建净化工程公司 | MTK核心板|MTK开发板|MTK模块|4G核心板|4G模块|5G核心板|5G模块|安卓核心板|安卓模块|高通核心板-深圳市新移科技有限公司 | 泥浆在线密度计厂家-防爆数字压力表-膜盒-远传压力表厂家-江苏大亚自控设备有限公司 | 智能监控-安防监控-监控系统安装-弱电工程公司_成都万全电子 | 旋振筛|圆形摇摆筛|直线振动筛|滚筒筛|压榨机|河南天众机械设备有限公司 | 北京网站建设公司_北京网站制作公司_北京网站设计公司-北京爱品特网站建站公司 |